Copied to
clipboard

G = C23.23D6order 96 = 25·3

8th non-split extension by C23 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.23D6, (C2×C6).7D4, (C2×D4).5S3, (C2×C4).18D6, C6.47(C2×D4), (C6×D4).10C2, Dic3⋊C414C2, C6.29(C4○D4), C6.D48C2, (C2×C6).50C23, (C2×C12).61C22, (C22×Dic3)⋊5C2, C35(C22.D4), C22.4(C3⋊D4), C2.15(D42S3), (C22×C6).18C22, C22.57(C22×S3), (C2×Dic3).17C22, C2.11(C2×C3⋊D4), SmallGroup(96,142)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C23.23D6
C1C3C6C2×C6C2×Dic3C22×Dic3 — C23.23D6
C3C2×C6 — C23.23D6
C1C22C2×D4

Generators and relations for C23.23D6
 G = < a,b,c,d,e | a2=b2=c2=d6=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 162 in 78 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Dic3, C2×Dic3, C2×C12, C3×D4, C22×C6, C22.D4, Dic3⋊C4, C6.D4, C6.D4, C22×Dic3, C6×D4, C23.23D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C22.D4, D42S3, C2×C3⋊D4, C23.23D6

Character table of C23.23D6

 class 12A2B2C2D2E2F34A4B4C4D4E4F4G6A6B6C6D6E6F6G12A12B
 size 11112242466661212222444444
ρ1111111111111111111111111    trivial
ρ21111-1-1-1111-11-1-11111-1-1-1-111    linear of order 2
ρ31111-1-111-1-11-11-11111-1-111-1-1    linear of order 2
ρ4111111-11-1-1-1-1-11111111-1-1-1-1    linear of order 2
ρ51111-1-1-111-11-111-1111-1-1-1-111    linear of order 2
ρ6111111111-1-1-1-1-1-1111111111    linear of order 2
ρ7111111-11-11111-1-111111-1-1-1-1    linear of order 2
ρ81111-1-111-11-11-11-1111-1-111-1-1    linear of order 2
ρ92222222-12000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ10222222-2-1-2000000-1-1-1-1-11111    orthogonal lifted from D6
ρ112222-2-2-2-12000000-1-1-11111-1-1    orthogonal lifted from D6
ρ122222-2-22-1-2000000-1-1-111-1-111    orthogonal lifted from D6
ρ1322-2-22-2020000000-22-2-220000    orthogonal lifted from D4
ρ1422-2-2-22020000000-22-22-20000    orthogonal lifted from D4
ρ1522-2-2-220-100000001-11-11--3-3--3-3    complex lifted from C3⋊D4
ρ1622-2-22-20-100000001-111-1-3--3--3-3    complex lifted from C3⋊D4
ρ1722-2-22-20-100000001-111-1--3-3-3--3    complex lifted from C3⋊D4
ρ1822-2-2-220-100000001-11-11-3--3-3--3    complex lifted from C3⋊D4
ρ192-2-2200020-2i02i000-2-22000000    complex lifted from C4○D4
ρ202-22-2000200-2i02i002-2-2000000    complex lifted from C4○D4
ρ212-22-20002002i0-2i002-2-2000000    complex lifted from C4○D4
ρ222-2-22000202i0-2i000-2-22000000    complex lifted from C4○D4
ρ234-4-44000-2000000022-2000000    symplectic lifted from D42S3, Schur index 2
ρ244-44-4000-20000000-222000000    symplectic lifted from D42S3, Schur index 2

Smallest permutation representation of C23.23D6
On 48 points
Generators in S48
(1 13)(2 17)(3 15)(4 16)(5 14)(6 18)(7 19)(8 23)(9 21)(10 22)(11 20)(12 24)(25 37)(26 34)(27 39)(28 36)(29 41)(30 32)(31 44)(33 46)(35 48)(38 47)(40 43)(42 45)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 46)(26 47)(27 48)(28 43)(29 44)(30 45)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 36 10 37)(2 32 11 39)(3 34 12 41)(4 40 7 33)(5 42 8 35)(6 38 9 31)(13 43 22 46)(14 30 23 27)(15 47 24 44)(16 28 19 25)(17 45 20 48)(18 26 21 29)

G:=sub<Sym(48)| (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,37)(26,34)(27,39)(28,36)(29,41)(30,32)(31,44)(33,46)(35,48)(38,47)(40,43)(42,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,10,37)(2,32,11,39)(3,34,12,41)(4,40,7,33)(5,42,8,35)(6,38,9,31)(13,43,22,46)(14,30,23,27)(15,47,24,44)(16,28,19,25)(17,45,20,48)(18,26,21,29)>;

G:=Group( (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,37)(26,34)(27,39)(28,36)(29,41)(30,32)(31,44)(33,46)(35,48)(38,47)(40,43)(42,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,10,37)(2,32,11,39)(3,34,12,41)(4,40,7,33)(5,42,8,35)(6,38,9,31)(13,43,22,46)(14,30,23,27)(15,47,24,44)(16,28,19,25)(17,45,20,48)(18,26,21,29) );

G=PermutationGroup([[(1,13),(2,17),(3,15),(4,16),(5,14),(6,18),(7,19),(8,23),(9,21),(10,22),(11,20),(12,24),(25,37),(26,34),(27,39),(28,36),(29,41),(30,32),(31,44),(33,46),(35,48),(38,47),(40,43),(42,45)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,46),(26,47),(27,48),(28,43),(29,44),(30,45),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,36,10,37),(2,32,11,39),(3,34,12,41),(4,40,7,33),(5,42,8,35),(6,38,9,31),(13,43,22,46),(14,30,23,27),(15,47,24,44),(16,28,19,25),(17,45,20,48),(18,26,21,29)]])

C23.23D6 is a maximal subgroup of
(C2×D4).D6  C23.4D12  C23.5D12  2+ 1+4.5S3  C42.102D6  C42.105D6  C4218D6  C42.118D6  C24.67D6  C24.43D6  C247D6  C24.46D6  C24.47D6  C4⋊C4.178D6  C6.342+ 1+4  C6.702- 1+4  C6.712- 1+4  C6.402+ 1+4  C6.732- 1+4  C6.422+ 1+4  C6.432+ 1+4  C6.442+ 1+4  C6.492+ 1+4  C6.792- 1+4  C6.802- 1+4  C6.812- 1+4  S3×C22.D4  C6.632+ 1+4  C6.672+ 1+4  C42.137D6  C42.140D6  C4223D6  C42.166D6  C42.168D6  C4230D6  C2412D6  C24.53D6  C6.1042- 1+4  C6.1052- 1+4  (C2×D4)⋊43D6  C23.23D18  C62.54C23  C62.56D4  C62.57D4  C62.111C23  C62.72D4  (C6×D5).D4  (C2×C30).D4  C6.(C2×D20)  C23.17(S3×D5)  C23.22D30
C23.23D6 is a maximal quotient of
C24.56D6  C24.14D6  C24.57D6  C24.18D6  C24.20D6  C24.21D6  C6.67(C4×D4)  (C2×C4).44D12  (C2×C12).55D4  (C2×C6).D8  C4⋊D4.S3  C6.Q16⋊C2  (C2×Q8).49D6  (C2×C6).Q16  (C2×Q8).51D6  C24.29D6  C24.31D6  C23.23D18  C62.54C23  C62.56D4  C62.57D4  C62.111C23  C62.72D4  (C6×D5).D4  (C2×C30).D4  C6.(C2×D20)  C23.17(S3×D5)  C23.22D30

Matrix representation of C23.23D6 in GL4(𝔽13) generated by

1000
0100
00111
00012
,
12000
01200
0010
0001
,
1000
0100
00120
00012
,
3000
0400
0010
00112
,
0900
10000
0080
0085
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,11,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[3,0,0,0,0,4,0,0,0,0,1,1,0,0,0,12],[0,10,0,0,9,0,0,0,0,0,8,8,0,0,0,5] >;

C23.23D6 in GAP, Magma, Sage, TeX

C_2^3._{23}D_6
% in TeX

G:=Group("C2^3.23D6");
// GroupNames label

G:=SmallGroup(96,142);
// by ID

G=gap.SmallGroup(96,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,218,188,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^6=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

Export

Character table of C23.23D6 in TeX

׿
×
𝔽