metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.23D6, (C2×C6).7D4, (C2×D4).5S3, (C2×C4).18D6, C6.47(C2×D4), (C6×D4).10C2, Dic3⋊C4⋊14C2, C6.29(C4○D4), C6.D4⋊8C2, (C2×C6).50C23, (C2×C12).61C22, (C22×Dic3)⋊5C2, C3⋊5(C22.D4), C22.4(C3⋊D4), C2.15(D4⋊2S3), (C22×C6).18C22, C22.57(C22×S3), (C2×Dic3).17C22, C2.11(C2×C3⋊D4), SmallGroup(96,142)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.23D6
G = < a,b,c,d,e | a2=b2=c2=d6=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >
Subgroups: 162 in 78 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Dic3, C2×Dic3, C2×C12, C3×D4, C22×C6, C22.D4, Dic3⋊C4, C6.D4, C6.D4, C22×Dic3, C6×D4, C23.23D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C22.D4, D4⋊2S3, C2×C3⋊D4, C23.23D6
Character table of C23.23D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | √-3 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -√-3 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 13)(2 17)(3 15)(4 16)(5 14)(6 18)(7 19)(8 23)(9 21)(10 22)(11 20)(12 24)(25 37)(26 34)(27 39)(28 36)(29 41)(30 32)(31 44)(33 46)(35 48)(38 47)(40 43)(42 45)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 46)(26 47)(27 48)(28 43)(29 44)(30 45)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 36 10 37)(2 32 11 39)(3 34 12 41)(4 40 7 33)(5 42 8 35)(6 38 9 31)(13 43 22 46)(14 30 23 27)(15 47 24 44)(16 28 19 25)(17 45 20 48)(18 26 21 29)
G:=sub<Sym(48)| (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,37)(26,34)(27,39)(28,36)(29,41)(30,32)(31,44)(33,46)(35,48)(38,47)(40,43)(42,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,10,37)(2,32,11,39)(3,34,12,41)(4,40,7,33)(5,42,8,35)(6,38,9,31)(13,43,22,46)(14,30,23,27)(15,47,24,44)(16,28,19,25)(17,45,20,48)(18,26,21,29)>;
G:=Group( (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,37)(26,34)(27,39)(28,36)(29,41)(30,32)(31,44)(33,46)(35,48)(38,47)(40,43)(42,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36,10,37)(2,32,11,39)(3,34,12,41)(4,40,7,33)(5,42,8,35)(6,38,9,31)(13,43,22,46)(14,30,23,27)(15,47,24,44)(16,28,19,25)(17,45,20,48)(18,26,21,29) );
G=PermutationGroup([[(1,13),(2,17),(3,15),(4,16),(5,14),(6,18),(7,19),(8,23),(9,21),(10,22),(11,20),(12,24),(25,37),(26,34),(27,39),(28,36),(29,41),(30,32),(31,44),(33,46),(35,48),(38,47),(40,43),(42,45)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,46),(26,47),(27,48),(28,43),(29,44),(30,45),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,36,10,37),(2,32,11,39),(3,34,12,41),(4,40,7,33),(5,42,8,35),(6,38,9,31),(13,43,22,46),(14,30,23,27),(15,47,24,44),(16,28,19,25),(17,45,20,48),(18,26,21,29)]])
C23.23D6 is a maximal subgroup of
(C2×D4).D6 C23.4D12 C23.5D12 2+ 1+4.5S3 C42.102D6 C42.105D6 C42⋊18D6 C42.118D6 C24.67D6 C24.43D6 C24⋊7D6 C24.46D6 C24.47D6 C4⋊C4.178D6 C6.342+ 1+4 C6.702- 1+4 C6.712- 1+4 C6.402+ 1+4 C6.732- 1+4 C6.422+ 1+4 C6.432+ 1+4 C6.442+ 1+4 C6.492+ 1+4 C6.792- 1+4 C6.802- 1+4 C6.812- 1+4 S3×C22.D4 C6.632+ 1+4 C6.672+ 1+4 C42.137D6 C42.140D6 C42⋊23D6 C42.166D6 C42.168D6 C42⋊30D6 C24⋊12D6 C24.53D6 C6.1042- 1+4 C6.1052- 1+4 (C2×D4)⋊43D6 C23.23D18 C62.54C23 C62.56D4 C62.57D4 C62.111C23 C62.72D4 (C6×D5).D4 (C2×C30).D4 C6.(C2×D20) C23.17(S3×D5) C23.22D30
C23.23D6 is a maximal quotient of
C24.56D6 C24.14D6 C24.57D6 C24.18D6 C24.20D6 C24.21D6 C6.67(C4×D4) (C2×C4).44D12 (C2×C12).55D4 (C2×C6).D8 C4⋊D4.S3 C6.Q16⋊C2 (C2×Q8).49D6 (C2×C6).Q16 (C2×Q8).51D6 C24.29D6 C24.31D6 C23.23D18 C62.54C23 C62.56D4 C62.57D4 C62.111C23 C62.72D4 (C6×D5).D4 (C2×C30).D4 C6.(C2×D20) C23.17(S3×D5) C23.22D30
Matrix representation of C23.23D6 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 11 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
3 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 12 |
0 | 9 | 0 | 0 |
10 | 0 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 8 | 5 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,11,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[3,0,0,0,0,4,0,0,0,0,1,1,0,0,0,12],[0,10,0,0,9,0,0,0,0,0,8,8,0,0,0,5] >;
C23.23D6 in GAP, Magma, Sage, TeX
C_2^3._{23}D_6
% in TeX
G:=Group("C2^3.23D6");
// GroupNames label
G:=SmallGroup(96,142);
// by ID
G=gap.SmallGroup(96,142);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,218,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^6=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations
Export